Ingresa un problema...
Matemática discreta Ejemplos
Paso 1
Escribe como una ecuación.
Paso 2
Intercambia las variables.
Paso 3
Paso 3.1
Reescribe la ecuación como .
Paso 3.2
Resta de ambos lados de la ecuación.
Paso 3.3
Divide cada término en por y simplifica.
Paso 3.3.1
Divide cada término en por .
Paso 3.3.2
Simplifica el lado izquierdo.
Paso 3.3.2.1
Cancela el factor común de .
Paso 3.3.2.1.1
Cancela el factor común.
Paso 3.3.2.1.2
Divide por .
Paso 3.3.3
Simplifica el lado derecho.
Paso 3.3.3.1
Simplifica cada término.
Paso 3.3.3.1.1
Mueve el negativo al frente de la fracción.
Paso 3.3.3.1.2
La división de dos valores negativos da como resultado un valor positivo.
Paso 3.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Paso 3.5
Simplifica .
Paso 3.5.1
Combina los numeradores sobre el denominador común.
Paso 3.5.2
Reescribe como .
Paso 3.5.3
Multiplica por .
Paso 3.5.4
Combina y simplifica el denominador.
Paso 3.5.4.1
Multiplica por .
Paso 3.5.4.2
Eleva a la potencia de .
Paso 3.5.4.3
Eleva a la potencia de .
Paso 3.5.4.4
Usa la regla de la potencia para combinar exponentes.
Paso 3.5.4.5
Suma y .
Paso 3.5.4.6
Reescribe como .
Paso 3.5.4.6.1
Usa para reescribir como .
Paso 3.5.4.6.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 3.5.4.6.3
Combina y .
Paso 3.5.4.6.4
Cancela el factor común de .
Paso 3.5.4.6.4.1
Cancela el factor común.
Paso 3.5.4.6.4.2
Reescribe la expresión.
Paso 3.5.4.6.5
Evalúa el exponente.
Paso 3.5.5
Combina con la regla del producto para radicales.
Paso 3.5.6
Reordena los factores en .
Paso 3.6
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 3.6.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 3.6.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 3.6.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 4
Replace with to show the final answer.
Paso 5
Paso 5.1
El dominio de la inversa es el rango de la función original y viceversa. Obtén el dominio y el rango de y y compáralos.
Paso 5.2
Obtén el rango de .
Paso 5.2.1
El rango es el conjunto de todos los valores válidos. Usa la gráfica para obtener el rango.
Notación de intervalo:
Paso 5.3
Obtén el dominio de .
Paso 5.3.1
Establece el radicando en mayor o igual que para obtener el lugar donde está definida la expresión.
Paso 5.3.2
Resuelve
Paso 5.3.2.1
Divide cada término en por y simplifica.
Paso 5.3.2.1.1
Divide cada término en por .
Paso 5.3.2.1.2
Simplifica el lado izquierdo.
Paso 5.3.2.1.2.1
Cancela el factor común de .
Paso 5.3.2.1.2.1.1
Cancela el factor común.
Paso 5.3.2.1.2.1.2
Divide por .
Paso 5.3.2.1.3
Simplifica el lado derecho.
Paso 5.3.2.1.3.1
Divide por .
Paso 5.3.2.2
Resta de ambos lados de la desigualdad.
Paso 5.3.2.3
Divide cada término en por y simplifica.
Paso 5.3.2.3.1
Divide cada término de por . Cuando multipliques o dividas ambos lados de una desigualdad por un valor negativo, cambia la dirección del signo de desigualdad.
Paso 5.3.2.3.2
Simplifica el lado izquierdo.
Paso 5.3.2.3.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 5.3.2.3.2.2
Divide por .
Paso 5.3.2.3.3
Simplifica el lado derecho.
Paso 5.3.2.3.3.1
Divide por .
Paso 5.3.3
El dominio son todos los valores de que hacen que la expresión sea definida.
Paso 5.4
Obtén el dominio de .
Paso 5.4.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 5.5
Como el dominio de es el rango de y el rango de es el dominio de , entonces es la inversa de .
Paso 6